Алгоритмы и структуры данных поиска. Лекции и курсы от Яндекса. Бабенко Максим Александрович
#777 Год выпуска: 2012 Производитель: Школа анализа данных. Яндекс. Сайт производителя: http://shad.yandex.ru/ Автор: Максим Александрович Бабенко Продолжительность: 18h50m55s Тип раздаваемого материала: Видеоурок Язык: Русский Описание: В этом курсе рассматриваются базовые алгоритмы и структуры данных, включая хеширование, сложность и модели вычислений, деревья поиска, B-деревья, задачи геометрического поиска, динамическую связность в графах и другое. Лекции читает Максим Александрович Бабенко, заместитель директора отделения computer science, ассистент кафедры математической логики и теории алгоритмов механико-математического факультета МГУ им. М. В. Ломоносова, кандидат физико-математических наук.
Лекция 1. Сложность и модели вычислений. Анализ учетных стоимостей (начало)
Основные ресурсы: память и время. О-символика. Примеры моделей вычисления: машина Тьюринга, RAM-машина. Сложность в среднем и худшем случаях. Пример: задача сортировки. Сортировка выбором. Теоретико-информационная нижняя оценка сложности. Разрешающие деревья. Нижняя оценка сложности в модели разрешающих деревьев. Массивы переменного размера: аддитивная и мультипликативная схемы реаллокации. Анализ мультипликативной схемы для массива переменного размера с помощью банковского метода.
Лекция 2. Анализ учетных стоимостей (окончание)
Анализ учетных стоимостей операций: функция потенциала, истинные и учетные стоимости. Стеки и очереди. Реализация на основе массива переменного размера и на основе связанного списка. Моделирование очереди с помощью двух стеков. Задача о поддержании динамического максимума в стеке и очереди. Изменяемые (mutable) и неизменяемые (immutable) структуры данных. Структуры данных с хранением истории (persistent). Immutable-стек и immutable-очередь. Проблема множественного будущего при анализе учетных стоимостей в persistent-структурах.
Лекция 3. Функции быстрой сортировки и сортировки слиянием
Понятие о методе «разделяй и властвуй». Алгоритм Merge-Sort. Слияние двух упорядоченных списков. Оценка сложности. K-way Merge-Sort для работы во внешней памяти. Сортировка слиянием без использования дополнительной памяти. Общая схема алгоритма Quick-Sort. Два варианта реализации Partition. Примеры неудачного выбора опорных элементов. Рандомизированный выбор опорного элемента. Сложность Quick-Sort в худшем и среднем случаях. Глубина рекурсии в худшем и среднем случаях. Элиминация хвостовой рекурсии. Задача об оптимальном дереве слияний. Коды Хаффмана. Слияние двух упорядоченных последовательностей различной длины. Теоретико-информационная нижняя оценка. Бинарный поиск «от края» (galloping).
Лекция 4. Порядковые статистики. Кучи (начало)
Нахождение порядковых статистик с помощью рандомизированной модификации алгоритма Quick-Sort. Линейность матожидания времени работы. Приближенные медианы. Выбор k-й порядковой статистики за линейное в худшем случае. Деревья со свойствами кучи. Почти полные бинарные деревья: нумерация вершин, навигация. Двоичная куча. Операция просеивания вниз и вверх. Реализация операций вставки, удаления и поиска минимума. Преобразование произвольного массива ключей в кучу (операция Make-Heap), линейность времени работы. Алгоритм сортировки Heap-Sort.
Лекция 5. Кучи (начало). Хэширование (начало)
k-ичные кучи, зависимость сложности операций от выбора k. Биномиальные (binomial), левацкие (leftlist) и косые (skew) кучи.
Лекция 6. Хэширование
Хеш-функции. Коллизии. Разрешение коллизий методом цепочек, методом последовательных проб и методом двойного хеширования. Гипотеза простого равномерного хеширования, оценка средней длины цепочки. Универсальные семейства хеш-функций, оценка средней длины цепочки. Построение универсального семейства для целочисленных ключей. Совершенные хеш-функции. Построение совершенной хеш-функции с помощью универсального семейства. Интерфейс множества с ошибками. Фильтр Блюма (Bloom filter). Оценка вероятности ложноположительного срабатывания. Интерфейс словаря с ошибками. Модификация фильтра Блюма (bloomier filter).
Лекция 7. Деревья поиска (начало)
Определение дерева поиска. Вставка и удаление элементов. Inorder-обход дерева. Красно черные деревья: определение и основные свойства. Реализация операций вставки для красно-черного дерева. Splay-деревья. Операция splay: zig, zig-zig и zig-zag шаги. Реализация операций вставки, удаления, слияния и разделения для splay-деревьев.
Декартовы деревья (дучи). Единственность декартова дерева для заданного набора различных ключей и приоритетов. Логарифмическая оценка матожидания высоты дучи.Операции слияния и разделения для дуч. Операции вставки и удаления элементов для дуч. Построение декартового дерева за линейное время при условии предварительной сортировки ключей.
Лекция 9. B-деревья. Система непересекающихся множеств
B+ деревья: определения и основные свойства. Операции поиска, вставки и удаления для B+ деревьев. Системы непересекающихся множеств. Реализация с использованием леса. Ранги вершин, эвристика ранга. Логарифмическая оценка ранга через количество элементов. Рандомизированная ранговая эвристика. Эвристика сжатия путей. Оценка учетной стоимости операций (без доказательства).
Лекция 10. Задачи RMQ и LCA
Задачи RMQ (range minimum query) и LCA (least common ancestor). Сведение от задачи RMQ к задаче LCA, декартово дерево. Алгоритм Таржана для offline-версии задачи LCA. Простейшие алгоритмы для online-версии задачи LCA: полная и разреженная таблицы ответов. Алгоритм Фарах-Колтона-Бендера для к задаче ±1-RMQ. Сведение задачи LCA к задаче ±1-RMQ: эйлеров обход дерева.
Лекция 11. Задачи геометрического поиска
Location problem, stabbing problem. Деревья интервалов. Сведение системы интервалов к двумерной задаче. Задача поиска точек в коридоре. Priority search tree. Задача поиска точек в прямоугольнике. Дерево отрезков по координате X, упорядоченные по Y списки точек в каждой вершине. Сложность O(n log n) для построения и O(log^2 n) для запроса. Уменьшение времени поиска до O(log n). Задача одновременного поиска в наборе упорядоченных списков. Fractional cascading.
Лекция 12. Динамическая связность в графах
Задача о динамической связности: вставки и удаления ребер, запросы о связности. Частный случай задачи для случая лесов. Деревья эйлеровых обходов: слияние и разделение. Использование амортизации и набора остовных лесов для решения со сложностью O(log^2 n).
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 10
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!