Качество: Отсканированные страницы + слой распознанного текста (OCR by Sapere aude)
Количество страниц: 393
Описание: А.П. Киселёв впервые выпустил «Элементарную геометрию» (ч. I, «Планиметрия»; ч. И, «Стереометрия») в 1892 г. Уже в начале XX ка этот учебник завоевал широкую популярность и профессиональное признание учителей России. Он регулярно переиздавался и начал постепенно вытеснять конкурирующие учебники геометрии других авторов (например, в 1916 г. вышло его 25-е издание под названием «Элементарная геометрия. Для средних учебных заведений. С приложением большого количества упражнений и статьи: Главнейшие методы решения геометрических задач на построение»). Такой успех был предопределен тем, что А.П. Киселёв обладал исключительным педагогическим даром, глубоко и свободно владел предметом, внимательно изучал новинки методики преподавания, постоянно интересовался новостями науки, имел богатейший многолетний практический опыт работы с учащимися, от издания к изданию неустанно совершенствовал свою книгу, учитывая замечания практикующих учителей. После 1917 г. наша средняя школа (как и вся отечественная система образования) претерпела многочисленные реформы и эксперименты, но учебники А. П. Киселева продолжали жить и использоваться.
Это издание учебника не содержит печально известных "улучшений" Глаголева.
В другой раздаче при распознавании текста был использован язык "русский", в результате чего буквы "і", "ѣ" и "ѳ" были неверно распознаны.
Эта раздача:
Цитата: писал(а):
Въ большинствѣ нашихъ учебниковъ геометріи понятіе о длинѣ окружности и вообще о кривой линіи принимается за элементарное, не требующее никакихъ оговорокъ и разъясненій, и выводъ, что длина окружности есть предѣлъ периметровъ правильныхъ вписанныхъ и описанныхъ многоугольниковъ, основывается на скрытомъ допущеніи или на не строго доказываемой теоремѣ, что объемлющая линія длиннѣе объемлемой. Въ предлагаемомъ руководствѣ, въ согласіи со многими авторитетами учебно-математической литературы, проведено иное воззрѣніе, которымъ признается, что понятіе о длинѣ элементарно только въ примѣненіи къ прямой; но когда рѣчь идетъ о сравненіи конечной кривой съ прямолинейнымъ отрѣзкомъ, тогда (вслѣдствіе несовмѣстимости элементовъ кривой съ элементами прямой) понятіе о длинѣ становится сложнымъ и требуетъ опредѣленія *).
Въ большинстве нашихъ учебниковъ геометрш поняйе о длине окружности и вообще о кривой лиши принимается за элементарное, не требующее никакихъ оговорокъ и разъяснешй, и выводъ, что длина окружности есть предЬлъ периметровъ правильныхъ вписанныхъ и описанныхъ многоугольниковъ, основывается на скрытомъ допущенш или на не строго доказываемой теореме, что объемлющая лшпя длиннее объемлемой. Въ предлагаемомъ руководстве, въ согласш со многими авторитетами учебно-математической литературы, проведено иное воззрите, которымъ признается, что понятие о длине элементарно только въ прим^ненш къ прямой; но когда речь идетъ о сравненщ конечной кривой съ прямолинейнымъ отрезкомъ, тогда (вотЬдствхе несовместимости элементовъ кривой съ элементами прямой) понят1е о длине становится сложнымъ и требуетъ опредЪлешя *).
#777 Киселёв Андрей Петрович — русский и советский педагог, «законодатель» школьной математики.
В наше время книги Киселева стали библиографической редкостью и неизвестны молодым учителям. А между тем дальнейшее совершенствование преподавания математики невозможно без личного знакомства каждого учителя с учебниками, некогда считавшимися эталонными.
Призыв "вернуться к Киселеву" раздается уже много лет. Потому что все новые учебники ориентированы на Науку, а точнее, на наукообразие, и полностью игнорируют Ученика, психологию его восприятия, которую умели учитывать старые учебники. Именно "высокий теоретический уровень" современных учебников — коренная причина катастрофического падения качества обучения и знаний. Сегодня усваивают математику около 20% учащихся (геометрию — 1%). В 40-х годах (сразу после войны!) полноценно усваивали все разделы математики 80% школьников, учившихся "по Киселёву". Это ли не аргумент за его возвращение детям?
Свои педагогические принципы А. П. Киселёв выразил очень кратко: "Автор... прежде всего ставил себе целью достигнуть трех качеств хорошего учебника: точности (!) в формулировке и установлении понятий, простоты (!) в рассуждениях и сжатости (!) в изложении".
Первый школьный учебник А.П. Киселёва по арифметике вышел в 1884 г.
В 1938 г. он был утвержден в качестве учебника арифметики для 5-6 классов средней школы; в 1955 г. вышло его 17-е издание. Пожалуй, невозможно в России найти представителя старшего поколения, кто не знал бы фамилию Киселёва. Именно с ней в наибольшей степени ассоциируются воспоминания о школьных учебниках далекой юности, о детской увлеченности или, наоборот, антипатии к математике. «Стабильные» учебники по арифметике, алгебре и геометрии А.П. Киселева, по которым учились многие миллионы россиян в первую половину XX века, обозначали собой целый период отечественного математического образования, определяли развитие методики преподавания математики в школе. С 50-х годов прошлого века началась смена декораций. Один за другим стали появляться новые (далеко не всегда оригинальные и далеко не всегда удачные) «утвержденные» учебники, имена авторов которых сегодня помнят разве что специалисты по истории образования.
Между тем в школах Израиля все это время без комплексов пользуются учебниками Кисёлева. Этот факт подтверждает директор Пушкинского Дома академик Н. Скатов: "Сейчас все чаще специалисты утверждают, что, оказывается, учебник Щербы по русскому языку все-таки перекрывает все новейшие учебники, и, кажется, пока мы (?) бесшабашно (?) предавались математическим экспериментам, умные израильтяне обучали алгебре по нашему хрестоматийному Киселёву".
Сегодня очередные реформаторы стремятся уменьшить перегрузку и "гуманизировать" обучение, якобы заботясь о здоровье школьников. Слова, слова... На самом же деле, вместо того, чтобы сделать математику понятной, они уничтожают ее основное содержание.
Сначала, в 70-х гг. "подняли теоретический уровень", подорвав психику детей, а теперь "опускают" этот уровень примитивным методом выбрасывания "ненужных" разделов (логарифмы, геометрия и др.) и сокращением учебных часов.
Подлинной гуманизацией было бы именно возвращение к Киселёву. Он сделал бы математику вновь понятной детям и любимой. И этому есть прецедент в нашей истории: в начале 30-х годов прошлого века "устаревший" "дореволюционный".
Киселёв, возвращенный "социалистическим" детям, мгновенно поднял качество знаний и оздоровил их психику.
За свою педагогическую деятельность Киселёв был удостоен орденов Святой Анны 3-й степени (1894), Святого Станислава 2-й степени (1896), Святой Анны 2-й степени (1899), орденом Трудового Красного Знамени (1934).
Похоронен в Петербурге на Волковом кладбище. Его могила — рядом с могилой Д.И. Менделеева.
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!